大学名	京都大学		
University	Kyoto University		
外国人研究者	ハミドレザ ジャファリアン		
Foreign Researcher	Hamidreza Jafarian		
受入研究者	辻 伸泰	職名	教授
Research Advisor	Nobuhiro TSUJI	Position	Professor
受入学部/研究科	工学研究科		
Faculty/Department	Department of Engineering		

<外国人研究者プロフィール/Profile>

国 籍	イラン	
Nationality	Iran	
所属機関	イランエ科大学	
Affiliation	Iran University of Science & Technology (IUST)	
現在の職名	助教	
Position	Assistant Professor	
研究期間	2015/7/10-2015/9/10	
Period of Stay	10th July- 10th September, 2015	
専攻分野	材料工学	
Major Field	Materials of Science	

At his office /研究室にて

<外国人研究者からの報告/Foreign Researcher Report>

①研究課題 / Theme of Research

Deformation Induced Martensitic Transformation from Ultrafine Grained Austenite in Steels

②研究概要 / Outline of Research

The aim of this study is to clarify microstructure development in both coarse and ultrafine grained martensitic steels (Fe-24Ni-0.3C and Fe-24Ni) subjected to different reverse martensite transformation at 600 °C for 30 seconds. The microstructure was cha

③研究成果 / Results of Research

The results proved that Fe-24Ni-0.3C exhibited austenite memory in both coarse and ultrafine grained steel after 1- and 6-cycle of revere martensite transformation. In contrast, coarse grained Fe-24Ni steel exhibited significant grain refinement by revers

④今後の計画 / Further Research Plan

I will pursue this study by investigation of tensile behavior for both coarse and ultrafine grained steels subjected to different cycle of reverse martensite transformation.

①研究課題 / Theme of Research

鋼の超微細粒オーステナイトからの変形誘起マルテンサイト変態

②研究概要 / Outline of Research

Fe-24Ni-0.3CおよびFe-24Ni合金に対し、受入研究者が最近見出した、強加工と焼鈍により完全再結晶超微細粒組織を得る手法を適用し、平均粒径0.4 μ mから数十 μ mに至る種々の粒径の準安定オーステナイト材を作製する。その逆変態挙動及び力学特性を、SEM/BSE, TEM, EBSDなどの組織観察手法で明らかにする。

③研究成果 / Results of Research

Fe-24Ni-0.3C合金の場合、粗大粒材および超微細粒材の両方において、1~6サイクル正変態・逆変態を繰り返しても、オーステナイト 組織の記憶効果が生じることが明らかとなった。一方、Fe-24Ni合金粗大粒の場合には、正変態と逆変態を繰り返すことによって、結晶 粒微細化が観察された。Fe-24Ni合金超微細粒材に関しては滞在中に実験が完了せず、引き続き検討を継続する。

④今後の計画 / Further Research Plan

各合金の粗大粒材および超微細粒材に種々のサイクルの正変態・逆変態を施し、それぞれの段階で引張試験を行って、機械的性質の変遷とオーステナイト組織の相関を明らかにする予定である。得られた成果は国際学術雑誌に発表する。

金属試料の作製/Metallographic polishing

Electron microscope observation/ 電子顕微鏡観察

金属試料の熱処理/Heat treatment