

The underlying cognitive process of complex problem solving Online vs Offline

<u>Yingting CHEN (D1)</u> Department of Systems Innovation, Graduate School of Engineering The University of Tokyo

Introduction

Background and objectives

Methodology

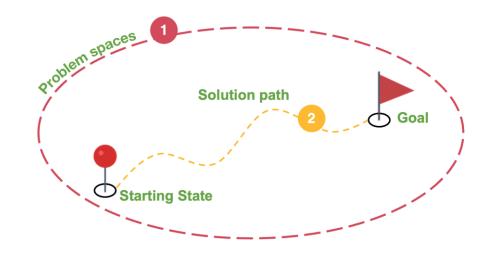
Experiments and data analysis

Results Analysis

Data collection overview and results by objectives

Conclusions

Progress evaluation and future work



Portrayal of Problem-solving

Newell and Simon (1972) proposed a framework for problem solving in which goals are achieved by movement through the **problem space**.

Within this framework different problem spaces are **mental representations** of different task environments.

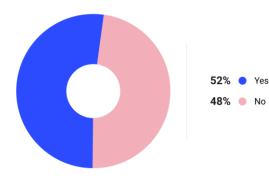
- Interrelated components
- Decomposed into Subproblems
- Various cognitive operations

Wastes in Meetings

67000 hrs

Of non effective meeting / year

50%


Caused by cognitive-related factors [1]

[1] Mosvick, R. K., & Nelson, R. B. (1987). We've got to start meeting like this: A guide to successful meeting management. Scott Foresman. https://books.google.co.jp/books?id=sDEUAQAAMAAJ

More meetings to avoid asynchronous communication

۲

Do you find you are in more meetings as a result of the shift to remote work?

2021 State of Remote Work buffer.com/2021-state-of-remote-work

57.1% work remotely

For the companies in Tokyo [2]

[2] 東京都新型コロナウイルス感染症対策本部. (2021, January 22). テレワーク導入率調査結果(1501報) | 東京都. 東京都庁. https://www.metro.tokyo.lg.jp/tosei/hodohappyo/press/2021/01/22/17.html

Question about remote CPS discussion

Are the online problem-solving discussions the same as the ones offline?

Type of Complex Problem

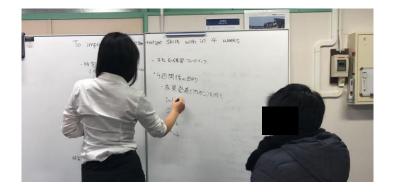
Time-related			System behavior			
Time-dependent	Static	Dynamic	Inform availa		Transparent	Opaque
Decision making	Discrete	Continuous	Randor	mness	Deterministic	Stochastic
Feedback interval	Delayed	Immediate				
Participant-related			Problem features			
Interaction type	Planning-based	Skill-based	Variable	values	Dichotomic	Continuous-value
Knowledge acquisition	Non Learning	Learning	Inter-cor	relation	Linear	Non Linear
Problem representation	Comprehension-based	Search-based	Unique	2ness	Well-defined	III-defined

Quesada, J., Kintsch, W., & Gomez, E. (2005). Complex problem-solving: A field in search of a definition? *Theoretical Issues in Ergonomics Science*, 6(1), 5–33. https://doi.org/10.1080/14639220512331311553

Methodology

Overview

- Mixed method study
- Three questionnaires(n=63, 16, 16)
- Two experimental discussions
- Within-subjects design
- Experimental discussion in dyads


Participants

- 16 individuals
- Aged 20-32 years
- Chinese mandarin speakers (n=9), Taiwanese (n=3), Japanese (n=2), Malaysian (n=1), Norwegian (n=1)

Experimental discussion

Offline settings

- Two-person group
- Native language
- 30-minute-duration
- Whiteboard to document information
- Experimenter presented in the same room

Online settings

- Two-person group
- Native language
- 30-minute-duration
- Google form to document information
- Experimenter presented in the same meeting with camera off

Coding Scheme

Source	Memory	Cue	Other Teamwork Acknowledgment of the previous utterance. Other Off-topic conversation and non- lexical words.		
utterance	Episodic memory Memory for 'temporally dated episodes or events, and the temporal-spatial relations.' Semantic memory A 'mental thesaurus" that provides "the memory necessary for the use of language'.	Self-directed cue A cue, sometimes includes self- referent contents, tends to elicit information from the self. Other-directed cue A cue relies upon general, semantic, and gist-based information to elicit information from the discussion counterpart.			
Outcome	Idea	Problem representation			
utterance	Initial idea An attempt of problem-solving at the finishing point of incubation. Developed idea An elaborated version based on the initial one.	Initial problem representation A temporary cognitive structure that combines stable knowledge structures with short-term information. Interpreter A new encoding process that modifies the earlier problem representation:			

- Elaboration
- Re-encoding
- Constraint relaxation

Information entropy per minute

In information theory, the entropy of a random variable is the average level of "information" inherent in the variable's possible outcomes.

Rare events are surprising and require more information to represent them than common events.

- Low Probability Event (occurrence of an utterance): High Information (*surprising*).
- High Probability Event (occurrence of an utterance): Low Information (*unsurprising*).

Entropy also represents the diversity of the contents.

$$H(m) = -\sum_{i=1}^{n} P(u_i) \log_e P(u_i)$$

Where,

H(m) = the information entropy per minute ui = the i-th utterance type occurs in a minute

Results and discussion

Overview

15,866s

Audio sample duration

10s

Max. utterance duration

3.94s

Mean utterance duration

90%	2024	2959
Observer accuracy	Online utterances	Offline utterances

Count of utterance types per 3-minute

- 1. Participants talked less in online discussions
- 2. The amount of talking gradually reduced along discussions
- 3. Similar patterns were shown in both online and offline discussions

600 500 Count of utterances 400 300 200 100 0 4-6 3-15 6-18 22-24 28-30 31-33 1-3 0-12 3-15 6-18 31-33 -13 4-6 7-9 0-12 9-21 25-27 7-9 22-24 28-30 9-21 25-27 Online Offline Episodic memory Semantic memory Other-directed cue Self-directed cue Non lexical/off-topic Teamwork Developed idea Initial idea Initial problem representation Interperter

Ratio of utterance types

- The discussion contents are dependent on meeting platforms (p-value: 3.13E-69)
- 2. More than twice as much of the speaking were used on idea development in offline meetings
- 3. There was 50% more off-topic utterances in the online discussions compared to the offline ones

Information entropy per 3-minute

- The online and offline information entropy had shown similar trend (correlation: .79, p-value: 5.91558E-08)
- Online discussions generated less information compared to the ones offline
- 3. The contents in online discussions reduce faster than the ones offline

Conclusion

- To understand the differences in cognition between online and offline discussions
- The discussion contents are dependent on meeting platforms
- Participants talked less in online discussions
- The online and offline information entropy had shown similar trend
- Future research will focus on closing the gap between the two platforms

Thank you

Contact: chen-yingting@g.ecc.u-tokyo.ac.jp