

The surface ages of the distant alien terrain: The icy satellites in the outer Solar System

The 69th TIEC Research and Presentation

by Emily Wong (22nd May 2021)

Supervisor: Prof Ida Shigeru and Dr Ramon Brasser Earth-Life Science Institute, Tokyo Institute of Technology

1) Our journey today...

To estimate the age of the icy satellites in the outer solar system

Relative sizes in between the moons are in scale Images credit: NASA

Saturn's satellites system

Images credit: NASA

1) Our journey today...

To estimate the age of the icy satellites in the outer solar system

Images credit: NASA

1) Our journey today...

To estimate the age of the icy satellites in the outer solar system

Method 1: **Radiometric dating** of the in-situ samples

2) Technique of ages estimationMethod 2: Crater densities on the surface

Various impact craters on the solid bodies in the solar system

Images credit: NASA

Images credit: NASA and irasutoya

Craters' size-frequency distribution [Size v.s. Density]

Images credit: Showmaker

Images credit: Showmaker

Craters' size-frequency distribution [Size v.s. Density]

Craters' size-frequency distribution [Size v.s. Density]

3) Problems in the studies of Outer Solar System

Outer Solar System Version

Aim:

- 1) Construct the crater chronology of outer solar system
- 2) Determine ages of the icy regular satellites of the giant planets
- Method:Computer simulationAnalytical calculationCrater studies
- ✓ Jupiter (Ganymede and Callisto)
 ✓ Saturn (Mimas, Enceladus, Tethys, Dione, Rhea)
 ✓ Uranus (Miranda, Ariel, Umbriel, Titania, and Oberon)

Assumption:

- 1) Satellites formed with giant planets
- 2) Satellites has no surface activities since their formation

Calculate:

Expected crater density

crater density that the satellites would have been if there is no surface activities since their crust solidified.

Evolution of the solar system according to Nice Model

- i) Giant planets migration at 4.5 Ga
- ii) Planetesimals scattered

Evolution of the solar system according to Nice Model

- i) Giant planets migration at 4.5 Ga
- ii) Planetesimals scattered

5) Results: Age estimations

6) Highlight

- 1) First update in crater chronology since two decades ago.
- 2) Comprehensive studies of the Outer Solar System bring insight to answer question related to the Inner Solar System.

The Galilean satellites (Moons of Jupiter)

3) Help the future space mission:
 NASA's Clipper mission → Europa
 ESA's JUICE mission → Ganymede

7) Conclusions

- 1) The impact in the outer solar system happened much more rapid.
- 2) Surface ages :
 - Most satellites are ancient, ~4.3 Ga Small and close-in satellites ~ 3.8 to 4.1 Ga.

Looking forward to the discussions

₽°,•*~***~**~°,•*~**~°,•*~**~°,•*~**~°,•*~**~°,•*~**~*~°,•*~**~*~°,•*~**~*