大学名	長岡技術科学大学				
University	Nagaoka University of Technology				
外国人研究者	チャン ゴック ダム				
Foreign Researcher	Tran Ngoc Dam				
受入研究者	原田信弘	職名	教授		
Research Advisor	Nobuhiro Harada	Position	Professor		
受入学部/研究科	工学研究科				
Faculty/Department	Faculty of Engineering				

<外国人研究者プロフィール/Profile>

国 籍	ベトナム		
Nationality	Vietnam		
所属機関	ホーチミン市技術教育大学		
Affiliation	University of Technology and Education, Ho Chi Minh City		
現在の職名	再生可能エネルギー研究センター 副センター長		
Position	Deputy head Renewable Energy Research Center		
研究期間	平成26年12月25日~平成27年3月24日		
Period of Stay	12/25/2014 - 3/24/2015		
専攻分野	エネルギー環境工学		
Major Field	Energy and Environment Engineering		

チャン ゴック ダム/Dr. Tran Ngoc Dam

<外国人研究者からの報告/Foreign Researcher Report>

①研究課題 / Theme of Research

Surface cleaning and hydrophobic coating on metallic and nonmetallic by dielectric barrier discharge at atmospheric pressure

②研究概要 / Outline of Research

The shape of reactor, the dynamic of electrons and ions and treatment mechanism will be determined to optimum the treatment efficiency under stable treatment condition. The optimal treatment efficiency will be determined based on analyzed kinetic and dynamic of electrons and ions. The small scale model will be setup to demonstrate. Results from experiment were analyzed and compared with those from modeling.

③研究成果 / Results of Research

A Nano coating process was proposed including cleaning, increasing absorption and coating. A flexible experimental model was set up for changing treatment condition. Paper, textile, glass and copper were coated with deference treating condition. The treatment efficiency depends on the material, treatment time and plasma energy such as applied voltage and current. Figure 1 shows the results of coating.

④今後の計画 / Further Research Plan

- 1. Modeling the kinetic and dynamic of electron and ion in reactor (2015)
- 2. Collecting and analyzing data and improve the treatment efficiency (2015)
- 3. Submit a paper(2015)
- 4. Designing, manufacturing the coating machine for industrial using (2015).

①研究課題 / Theme of Research

大気圧放電プラズマの産業応用について

特に、大気圧下での誘電体バリア放電プラズマを用いた、金属および非金属表面の洗浄と撥水処理

②研究概要 / Outline of Research

表面処理実験を行い

- ・最適な処理効率を実現するために、処理リアクタ形状、電子とイオンの動力学、洗浄や処理メカニズムを解明することを指導
- ・処理効率は荷電粒子である。電子とイオンの運動学、動力学の解明が必要である
- ・処理効率の最適化や荷電粒子の運動解析のため、小型モデルの構築に対して議論・助言した
- ・実験結果の解析のために、日本とベトナムで行った実験結果と構築した小型モデルを比較検討した

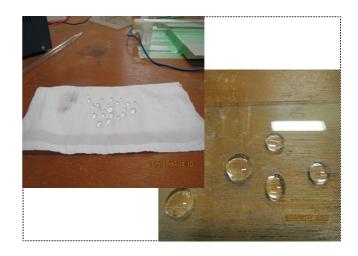
③研究成果 / Results of Research

実験と小型モデルによる解析を通じて以下の事柄を明らかにした

- ・誘電体バリア放電を用いて、表面洗浄、吸収効果の向上とコーティングについて、ナノコーティングプロセスを提案した
- ・非常に汎用的なナノコーティング実験装置を設計製作した
- ・紙、布、ガラス、銅版その他プラスティック等に対して異なる条件で処理を行うことができた
- ・これら処理で、例えば撥水効果の向上が確認され、商業応用の可能性が示された
- ・処理効率は、処理する材質、処理時間および処理電力(印加電圧や放電電流)によって異なることがわかった

以上の研究成果を通じて、受け入れた研究者が、この研究分野で自国に帰っても十分に研究を継続する基盤ができた。また産業応用に向けて企業等との連携も可能となった。

④今後の計画 / Further Research Plan


今後の研究として、以下の点について、互いに連携しながら進めていくこととする.

- 1, 放電リアクタ内での荷電粒子(電子とイオン)の運動についての詳細なモデリングをさらに進める
- 2, 処理効率の向上を目指した実験結果を収集し解析する
- 3, これまでの結果を論文にしてジャーナルに投稿する
- 4、商業応用に向けて、コーティング装置を設計・製作する

当面, 原田がベトナムに出かけて本コーティング技術に関して, ベトナム企業等との連携を進めることとし, 本学開催の技学カンファレンス(6月)に受入れ研究者を再度招聘する予定である.

実験処理リアクタと処理試料 /Experimental Reactor and papers to be treated.

撥水処理後のティッシュペーパとガラス板 /Hydrophobic Surface of Tissue Paper and Glass